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The problem of propagation of excitation along s nerve 1s of considerable
interest and has drswn the attention of many investigators. The difficulles
in the treatment of this problem arise mainly from the indefiniteness and
unclear nature of phisico-chemical processes which accompany and stipulate
these phenomens,

A detalled presentation of the current state of knowledge of thils subject
can be found in & recent book of Hodzhkin [1].

As a certain model of the process for the propagatiom of an impulse along
8 nerve, Ostvald and later Bonhoeffer [2 and 3] suggested a simple electro-
chemlcal system,

In the present paper the above-mentioned system is used to develop & mathe-
matical investigation of the impulse propagetion procesa, The mathematical
scheme of thls phenomenon is based on ideas introduced by Bonhoeffer and his
school concerning electrochemical processes which ensure the propegation of
an impulse,

The system under cone-

g 3 - sideration consists of &
o ferrus string (1) placed
in a capillary (3) filled

f/, with concentrated nitric

o acid (2), Pig.1l. Two pro=

R 7 PR e 77 acld (2), Pig.1. Two P
"N
interaction of nitric aciad
4 and iron. These are dis=-
Pig. 1 solution of iron manifes~
ting in the departure of
ions to the scolution and oxldaticn of iron which results in forming a dense
£1lm of ferric oxide (4) on the string surface. If the concentration of
nitric acid is sufficlently strong the latter process becomes predominant.
Since the oxide film prevents the process of dissolution from continuing, a
astate of equilibrium is set up in which processes of disgolution and oxida~
tion practically cease. The oxide f1lm is spread over the entire surface of
iron and the potential difference between the iron and solution assumes a
constant value,

This state of iron is called a "passive” state and the proccss of transi-
tion into this state is termed "passivation”. If the potential difference
is artificislly decreased to a certain limiting value, then the oxide film
wlll be destroyed and iron will pass to the active state characterized by
the vigorous oxidation process. Simultaneously nitric acid is generated
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with an essential influence onthe run of the proceas, In the equilibrium
state the whole iron surface is covered by oxide film.

Let us assume that the film has been artificially destroyed over & certain
region of the string. Since the oxide film hes & high electrical resistance,
the current flows into the destroyed surface, Consequently, the difference
between the potentials of the iron and the solution diminishes. If the dimen=
slona of the destroyed area are sufficlently large, the drop in the potential
difference will be 8o pronounced that even on the string surface still covered
by oxide film, the potential difference reaches its limiting value., This in
turn will cause vanishing of the oxide film in the vicinity of the initially
destroyed area and the front of the disturbance starts to move in both direc-
tions slong the string surface., However, during an active state of the sur-
face, the satring will not be completely dissolved mainly because of the and
increase of concentration of nitric acid. The newly created oxlde coating
will eventually lead to the passivation process, hence the passivation front
propagates In both directions behind the activation front, In this way two
disturbances propagate in opposite directions along the string surface (sec-

tions 5 in Flg.1).

The pulse advancing is recorded by
measuring the differences in poten=-
tials ¢ Dbetween the solution and iron.
A typlcal plot of the dependence of o
upon time ¢ 18 shown in Fig.2, taken
from the paper [4].

Experiments [2 and 3] have proved
that the pulse becomes stationary and
propagates with constant velocity withe-
out distortion in a short time after

Fig. 2 the initiation of the process, In the
* following the theory of propagation of
the stationary pulse associated with
generation and absorption of energy will be considered.

18

1. Statement of the prodlem and basic equations. 1°. According to the
assumptlon of Bonhoeffer and his school, the following processes take place
on the boundary between iron and solution:

1) Dissolution of iron on the active surface.

2a} Formation of an oxide coating transferring the active surface into
the passive.

2b) Disintegration of the oxlide coating transferring the passive sur-
face into the active.

3a) Generation of nitric acid on the sctive surface.
3b} Generation of nitric acid on the passive surface,

Each of these processes is characterized by the density of electric current
J {positive or negative), which is proportional to the amount of conveyed
substance. This amount depends upon the local value of the potential differ-
ence ¢ between the iron and the solution. The above-mentioned relation=~
ship is shown in the diagram, the original version of which, [4], differes
slightly from the presented here in Fig.3. The difference in potentials is
measured with reference to the equilibrium state corresponding to the entirely
passive state (the unity on the current axis corresponds to 0.65 4/om®* and
the currents f,, and J,, are displayed out of scale), The generation pro-
cess of nitric acid is autocatalitic, i.e. its rate depends on the poten~
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tial difference ¢ as well as on the concentration o of nitric acid within
the boundary layer. For sufficlently weak concentrations the latter depend-
ence can be assumed as a linear function. Therefore the current density,
shown in Fig.3, corresponds to the unit concentration. The true value of
current density is obtalned from curves f,, and J,, (Pig.2), through a
multiplication by a local value of bound-
ary layer concentration of nitric acid.

20

During the interchange of active and
passlve processes intermediate states
are also possible where the string sur-
face 1s partly covered by oxide coating.
There are indications that the oxide
fllm is generated or destroyed at once
through its entire thickness [31].
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Assuming this as a hypothesls, the complete description of the state of
the surface at a given string point can be obtained in terms of a rate of
activation o which is a relative area of activation regions. (It is as-
sumed that a physically Infinitesimal element of the surface involves a suf-
ficlently large number of active and passive reglons, as shown in Fig.4 by
white and shaded areas).

The rate of transport ¢f substance on the surface in the course of any
reaction is proportional to the corresponding current density. Therefore,
in a unit time, the fraction of surface Kaj,,, 18 converted .from the active
to the passive and the fraction K (1 — a)|j2b| from the passive state to

tha active. The rate of increase in the share of active surface can thus be
expressed [4] as da

= — K [ofsq -+ (1 — &) Jab] (1.1)

Since the current can flow into the string surface solely from the solu-
tion, therefore, assuming the electric conductivity ¢ as a constant, we
have for the total density the following expression:

a
— (%LN = a (/1 + jea) + (1 — &) J2o + [#sa + (1 —a) jw] e (1.2)

where 7T, denotes the string radius 1ln the cylindrical coordinate system
(r, 9, z) and the z-axis coincides with the axis of capillary, r 1is the
distance from the latter.
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The nitric acld produced in the course of reactions diffuses into the
solution. The rate of deneration of acid is proportional to the total den~
sity of current  j, = [aj3s + (1 — @) gl c. Thus, the expression for the
flux of nitric acid on the string surface has a form

D (%ﬁ-)mn = Be[ofsa + (1 — ) faplrers (1.3)

where D stands for the coefficient of diffusion, and g denotes a propor=
tionallity coefficient.

In order to obtain a full system of equations, 1t remains to write down
equatione for the distribution of potential ¢ and concentration of nitric
acid € in the solutlion as well as the boundary conditions on the capillary
wall, The distribution of potentlal ¢ satisfies the Laplace egquation,
which in view of axial symmetry of the problem, has the form

¢ 1 a@ 63@
Mty T 322 (1.4)
For distribution of concentration ¢{(r, z, t) is described by the equation
of diffusion 6 aC 1 8C »
=D+ 5 +5a)+a(© (1.5)

where ¢{0) denotes the rate of absorption of nitric acid in the volume of
solution in the course of certain auxiliary reactions. The significance of
these reactions consists in the supporting of concentration on a specified
level o in the absence of impulse., Hence, the function ¢(C) should satisfy
the following conditions:

g(c) =0, g(C) <0 tor C>o0, g{C) >0 tor C < e

In practice, the above mentioned reactions are accomplished by adding to
the solution a definite amount of ures.

Assuming the capillary wall as impermeable and electrically insulated, the
boundary conditions on the wall take the form

9
—35:1__0 WMO for r=R (1.6)

where R 1s the capillary radius.

Thus, the solution for potential ¢ and nitric ascid concentration ¢
can be determined by considering Equations {1.4) and (1.5), boundary condi~
tions on the capillary wall (1.6) and also Pormulas {1.1) to (1.3) which
after elimination of o yield two differential conditions relating values
of o® and C =g on the string surface. It should be mentioned that these
boundary values of o and ¢ are of particular interest in the problem
under consideration.

2°, In the following, we shall consider the solution of the derived
equations, corresponding to the condition of uniform steady propagation of
a single pulse of excitation. For a pulse travelling to the left with con-
stant velocity w© this means that quantities o, o and ( depend upon the
argument { = z + wt , but not upon z and t , separately
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=91, C=CEn, c=c@) a=a( (1.7)

Ahead a2nd behind the impulse, the surface undergoes a passive state, hence,
af{+ =) = 0 . Since the excitation propagates along the undisturbed, passive
state of string, the following relation holds:

(P(.,.. OO, r) :‘:Oy C(— OO, r) xCQ (1.8)

The mathematical problem formulated in this way is overdetermined, and
for arbitrary value of w does not have in general a nontrivial solutlon.
The requirement of the existence of nontrivial solution provides the condi-
tion for the determination of pulse velocity w , which is found as an inde-
pendent result in the course of solution of the problem. This situation is
also characteristic for the theory of propagation of gene of Kolmogorov,
Petrovskil and Piskunov [5], and for the theory of flame propagation of Zel'-
dovich [6]. There exists a deep internal relation between these problems and
that considered in the present paper, a3 will be shown later,

3°. TFor the complete solution of the problem, it would be necessary to
determine the range of parameters in which the required form of the solution
exists (this corresponds to the khown "range problem" in the theory of flame
propagation). That complicated problem 1s beyond the scope of the present
paper.

2. Uniform propagstion of impulse, In view of {1.7), the basic system
of Equations (1.1) to (1.6) and (1.8) describing a uniform propagation of
pulse to the left, with velocity w , take the form

da

wag =Ko+ (1 —a)jn] (2.1)

—o () =aliitju) + (L — )+ [+ (L —a)ful e (2.2)
D (%) = Belejsat (1 —a)jul (2.3)

+ s (2.4)
%%—D(%'§+%‘,‘i+ i%‘i) 2:5)

2% -0, £o0 1o r=r (2.6)

(=001 =0, C(—o001) =6 a(towx)=0 (2.7)

Let us assume that the clearance & between the string and capillary wall
is sufficiently small so that the change in the potential over the clearance
thickness can be neglected. The value of the potentlal on the string bound-
ary can thus be replaced by the mean value of the potentlal over the clear=-
ance surface,

This assumption together with (2.2) yields
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d?q . , . . .
= gn =it jw) + (1 —a) o+ (Wt (L =) jnle  (28)
where the previous notation for ¢ 1s maintained. Thus, the problem of uni-
form propagation of pulse has been reduced to the solution of Equations (2.1),
(2.8) and (2.5) with the boundary conditions (2.3) and (2.7) and the second
condition (2.6), (recall ({ry, ¢) = c(C) ).

In the following, we shall be concerned wlth the problem of existence of
the solutlon, which satlisfies all conditions listed above, and has the form
of a uniformly propagated pulse. In the present paper, the qualitative ana-
lysis of characteristic singularities in the potential distribution will be
also given.

3. Propagation of the activation front and oconditions of impulse exist-
ence. 1°. Qualitative 4d1nvestigation of the
governing system . Filnlteness o f actilva-
ti1on front velocilty . Weshall start with the proof that the ve-
locity of activation front is always finite. At the pulse front { = O , the poten-
tial ¢ reaches the limiting value, whereas for all points ahead the front
of excitation o ® O . Indeed, for { - — = , we have ¢ - 0 and g - O,
according to the boundary condition (2.7). Consequently, for sufficlently
large absolute value of ¢ , the following inequality should hold '5% ;> 0.
At the same time o < 9, and, hence, f,,= O , whereas J2_§ 0 . Therefore,
Equation (2.1) can be satisfied only if ¢ = (. The activation ratio a
becomes variable for all ( > O, 1l.e. everywhere to the right of the limiting
point o, .

2°. The second boundary conditilion for
the potential . According to boundary condition, the surface
activation ratlo should drop to zero for ( - + « ., It follows from Equation
(2.1), that in this case the current density J=2» vanlshes, what implies the
condition ~ It can be shown that under the natural requirements of
finiteness of the potential, ¢ tends to zero with ¢ - + « . 1Indeed, 1if
{ - = , by virtue of (2.8) ¢ cannot continue to exceed certain fixed,
arbitrary small value, since thils would imply the unboundedness of ¢ . Among
the integral curves of (2.8) passing through the region of sufficlently small
¢ , there i1s one curve passing through the origin ¢ = 0 , (see [7]), Chapter
XIII, Section 4, Theorem 4.1). Finally, the curves passing through the
region of small o will never return back to that region according to Equa-
tion (2.8) and condition o - O . Therefore, the second boundary condition
for the distribution of potential has been derived from the single assump=-
tion concerning the boundedness of potentlal o

@ (+ o) =0 (3.1)

3, Basic eguation for the potentilal

in the case o f slowly varlable nitric
acid concentratilon . Eliminating o from (2.1) and (2.8),



Propagation of c¢xclitation in a model of a nerve 1161

we obtain

B ’ "
b(4+ )¢ —Fo—Dley =X o+ LsE (32

where

f

A 2,,—;‘2b>0 B _ JbJ JJb
7 ' =

7
>0, E = 7é—<0
X = jyp— AJs, J =].1+]'2a_"]2b+(j3a_]3b) ¢, Jo=/jaw+ Jac (3.3)

T30 — (T3 —Igp) I, . . d
S:___ 3b :‘f;lz 3b. b’ ‘4.1_—_———1%—(]3“——]3?])22—

and a dot denotes differentiation with respect to ¢ for constant o . As
it is seen from Equation (2.3), for small values of x = B/D , the rate of
change of nitric acid concentration 1s small. Thus, the term with dc/Hc
in (3.2) can be neglected, to give
Y =X — 5" (3.4)
It should be emphaslized that the latter equation does not become self-
contained in the case x # 0 . The coefficients in this equation depend on
¢ through the slowly variable function ¢({) . The full system of govern-
ing equations involves Equation (3.4), appropriate equation describing the
concentration of nitric acid together with corresponding boundary conditions.
In the following, considerable.attention will be given to Equation (3.4)
which is the basic equation for all further results. The reason why Equation
(3.4) can be considered independently is that under a slow change in nitric
aclid concentration, the character of thls change is not important.

sddg” -———cp —

4°, Necessity for the account of the
production of nltrilc acid . Nevertheless the change
in nitric acid eoncentration cannot be entirely neglected (by assuming
K o= B/T = 0). It will be shown that if the concentration is assumed to be
constant, no impulse-type solution exists.

In the case of « =0 and ( < O the problem reduces to the solution of
the following equatlon:
¢ [
— b ] = JaC, ¢ = ¢y = const (3.9)
with boundary conditions
¢ (— o) =0, ¢ ©0) =« (3.6)
(Equation (3.5) has been derived from (2.8) by putting o = 0 and Ju =0
for o < ¢,). The existence and uniqueness of the solution of the latter
problem can be proved by means of direct integration.

For ( > O Equation (3.4) is an exact equation and its coefficlents do

not depend on { . The boundary conditions for Equation (3.%4) can be obtained
from the requirements of continuity of o and o for ( = O , they are:

@(+0) =¢(—0) =¢r, ¢ (+0) =¢' (=0, ¢ (+0)=¢"(—0)E.7)
where ¢@’(— 0) and o”(~ 0) are independent on w and are determined from
the solution of problem (3.5) and (3.6).
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The problem described by (3.4), (3.1) and (3.7) 1s overdetermined since
there are four conditions for the third order differentlial equation. Thils
circumstance glves a possibility to determine the unknown veloclty of pulse
propagation.

It will be shown that the range of possible velocities of pulse propagation
is bounded. Assume the converse. In the course of the process of pulse pro-
pagation, the value of potential ¢ necessarilly attains the maximum. Con-
sider an inflection point (* on the extreme left of the diagram ¢({) where
¢ > 0 . According to the definition, o = o, for ( = 0 , whereas within
the range 0 < ( < (* , the function ¢ , together with its first derilvative
¢’, increase and the second derivative ¢” tends simultaneously to zero,
Finally, the value «’(0) is independent on velocity w . These statements
are in contradiction with Equation (3.4) written down at the point of inflec-
tion.

Since the range of admissible pulse velocitles 1s bounded, 1t is always
possible to find such a relation between parameters that the coefficient of
third derivative term in Equation (3.4) is small for all velocitles from the
considered range.

Let us show that under the latter assumption, the problem (3.%),(3.1) and
(3.7) has no solution (i.e. the pulse does not exist) 1f the mechnism of
production of the nitrilc acld 1s off.

Since the coefficient of the third derivative term has been assumed to be
small, Equation (3.4) becomes in some sense a second order equation. It is
convenient to change variables P =d¢/dEf and E =/ nyE and consider
behavior of integral-curves on the plane (P, £€) . Equation (3.4) in new vari-
ables takes the form (3.8)

d | d —
p%(A——(,)Ep);: X +oBp—hp — (p——g)(m:w/K Vb, A=w/J)

Consider first a simplified equation without the second term in the right-
hand side of Equation (3.8). This is a first order equation and the phase
diagram for that equation is shown in Fig.5.

The polnt T on the phase dilagram
P T corresponds to £ = O and its position
does not depend on w . (The curve 0T

relates to the solution of the problem

(3.5),(3.6))., The curve representing a

desired solution should follow the direc-

tional fileld on the path from 7T to 0.

It 1s seen from Flg.5 that in the case

of simplified equation, this cannot occur.

The situation will not be changed 1if an

R S account is made for the small, disre-
garded third derivative term, i.e. 1f a

Fig. 5 full equation (3.8) is considered.
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Indeed, the sought trajectory of the considered point should necessarily
intersect the gp-axis within a defined distance right of the point 27 . This
follows from the fact that the trajectory passing through 7 has a positive
slope and, as can be shown, the tangent of trajectory is vertical nowhere
except on the eg-axis. (The last statement 1s true for arbitrary trajectory
corresponding to the full equation). It 1s easy to see that the representa-
tive point after having intersected the g-axls should necessarily depart from
this axis by & finite distance, (otherwlse the second derivative term can be
neglected in (3.8) which is not consistent with the behavior of curves describ-
ing the solution of simplified equation).

The zero 1soclinic of the simplified equation is given by Formula
1y
p=—=5X (3.9)

Above this line, trajectories of the full equation cannot have a maximum and
below this line a minimum. Indeed, the condition for a maximum requires

p’ =0 and p”"< 0, whereas Equation (3.8), written down for example at a
point above the line (3.9), gives the converse.

Thus, i1f the sought integral curve intersects the segment PQ (including
also point ¢ ), it should also intersect the line PS5 within & defined dis-
tance from the point P . This is true since the point P cannot be approaches
by the trajectory at an arbitrary small distance. However, if the represent-
ative point approaches the point of intersection with the 1soclinic of infin-
ity, the slope of trajectory increases until the term with second order deriv-
ative becomes significant, preventing the slope of the trajectory to be ver-
tical.

On the line PS , the slope of the trajectory assumes a large positive
value if the coefficlent of the second derivative term in (3.8) is suffi-
ciently small. Furthermore, the trajectory can approach the line Fr only
from below of the polnt of intersection with PS since otherwise there would
be a minimum between FR and PS but this cannot occur. Finally, there
exlsts such a strip enclosing the line PR that its width tends to zero with
the second derivative of (3.8). Inside the strip, the trajectory has a large
negative slope. Indeed, as previously, the trajectory cannot surpess a
finite distance within the strip. Consequently, the trajectory is advanced
within the strip by the distance of the order of strip width.

Inside the strip Equation (3.8) simplifies to give

o d2 [
where the right-hand side can now be regarded as constant. Taking into
account that the coefficient of the second derivative term is small, we come
to the desired result.

Thus, the trajectory intersecting lines PS and PR should have a large
positive slope near PSS and large negative slope near PR . However, this
18 not possible since below the 1line (3.9) the trajectory cannot attain a
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minimum,

We shall prove now that an integral curve corresponding to the impulse
cannot meet the gp-axis to the right of the point ¢ . Indeed, suppose the
w-axls has been intersected to the left of the point ¢ . It is now possible
for the representative point to follow the directional field of the simpli-
fled equation after having passed through the narrow strip surrounding [k
axis. This would be no longer possible in the case when the location of
Intersection point is to the left of the point ¢ . Now, the directional
field is polnted opposite to the motion of the representative point, thus
preventing the trajectory from leaving the narrow strip surrounding the
o-axls where the second derivative 1s essential. The arguments advanced

imply that the sought integral curve cannot remain within the strip all the
time.

This completes a proof that no pulse of excitation is possible for «=O.

4. Construotion and qualitative analysis of the impulse-type solution.
1°. General conslderatilons . The proof given
above not only provides a confirmation of nonexistence of the pulse excita-
tion in the case when the mechanism of change in nitric acid concentration
is absent, but also indicates the nature of this mechanism.

Let us assume that « 1s small, although not zero. Then concentration
¢ of nitric acid becomes variable, Equation (3.4) is no longer self-contained

and the phase diagram, Filg.5, loses 1ts stationary character and changes
slowly.

In particular, the saddle point ¢ moves to the left until it reaches
the point P (*). This makes possible that the trajectory returns to the
origin.

Since the change in the concentration of nitric acid is slow, the derived
results, concerning the trajectories of the representative point, remain
valid everywhere except the small nelghbo-hood of singular points P and @ .
The motion of the representative point is slowed down so that the velocity
of the saddle ¢ , resulting from the variation in concenration ¢ , becomes
comparable with the velocity of the representative point. In order to return
to the origin, the representative point should fall within a small neighbor-
hood of the moving saddle and then together with the neighborhood of ¢
approach the singular point 2P . This is possible solely in the case of non-
constant concentration of nitric acid.

Besldes the small parameter x determining the rate of change of concen-
tration of the nitric acid, there is another small parameter X . This 1s
the coefficient in the term with the highest derivative in Equation (3.8).

#) PFor sufficiently slow absorption intensity ¢ and diffusion coefficlent,
the increasing concentration ¢ will exceed this value for which ¢ coin-
cldes with P
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Equation {3.8) in the immediate neighborhood of an arbitrary regular point
(9., P.), on the plane g, P , can bde written in the form

A X dp
Az’ (-—‘—mE)z:mB Rt =p=t 4.1
12 I 1 1+ 7 4 a9 (4.1)
where the subscript 1 denotes the value of corresponding coefficient at
the point o = ¢y, and p = p, .
The solution of Equation {(4.1) is expressed as

s= EBBO | oy [ 0BB) g —g)]  (42)

wnere ¢ 1is a constant of integration. The first term in Formula (4.2)
corresponds to the solution of simplified equation with X = O , whereas the
second term represents a correction which may increase or decay exponentlally
depending upon the sign of coefficient

(4, — op,E,) f op, (4.3)
and the direction of change in P .

2°. Constructilion of ¢the solution . The
solution of the problem (3.5), (3.6) is independent of the value w over
the part 0T oftthe trajectory. Since the concentration of nitric acid
varies slowly, the guantity o can be regarded as constant and equal to ¢o .
Now, the problem is to separate one trajectory which corresponds to sll pre-
scribed conditions of impulase propagation. Assuming variable concentration
of nitric acid, let us examine a possible motlion of the representative point
along the part of the trajectory, behind the point 7 . Inside the quadrant
-TPQ the quantity {%.3) is positive. Simultaneously ¢ 1increases and the
correction for the trajectory, resulting from the consideration of full equa-
tion (second term in Equation (4.2)), tends to zero. Hence, the further
motion follows the trajectory of simplified equation corresponding to A =0,
This property remains valid even after the intersection of this trajectory
with the gp-axis, since simultaneously coefficient {4.3) changes its sign and
the direction of change of ¢ Dbecomes reversed., Thus, the preliminsry con-
struction of impulse trajectory can be based upon the simplified equation.

Since the rate of change of concentration, and consequently the velocity
of saddle ¢ are small, there exists such an interval of w that all trajec~
tories passing through 7 1intersect the e-axis left of the point ¢ . Each
value of w uniquely determines the distribution of concentration o{{, w).
The computation of the nitric acid distribution can be simplified by the
replacement of function J, by the finite function, vanishing for |} > ¥,
where N 1is a sufficiently large number. Clearly, the latter assumption
will distort only those trajectories which do not correspond to the impulse.

Let us denote by {,{(w) the value of { , corresonding to the first inter-
sectlon of trajectory with the g-axls under given w . The sought solution
of the boundary value problem, for the simplified equation (3.4), should
conform to conditions

9 (00) =, ¢ (L) =0 (4.4)



1166 G.I. Barenblatt, V.M. Entov and R.L. Salganik

The coefficients in Equation {3.4) can be determined using the appropriate
distribution of o({, w) . In the limiting case u - O the solution of the
formulated boundary value problem should approach the function o = g,{{) ,
where ¢, denotes the coordinate of saddle ¢ . The condition of smoothness
implies that for small positive x the solution should close to the value

wo () . Thus, the simplified equations and corresponding boundary conditions
can be written in the form

AY" — By’ — X1 =0 (@, ¢) +o 0¥, %)  (h =9 —gq,) (4.5
P (o0) =0, P (&) =—a (£ (4.6)

According to the assumptions concerning the finiteness of fy the deriva-
tives g’ and ¢* uniformly tend to zero with x - O , and the first term
in the right-hand side of Equation (4.5), (a forcing term), can be made
arbitratily small. The characteristic equation correaponding to Equation
{4.5) has always one positive and one negative root. Neither of them vanish
as { varies. This implies that the simplified equation (4.5) without the
source term has always a sclution §, , which uniformly tends to zero with
¢ ~o . {(This statement is a generalization of corresponding theorem proved
in [7], Chapter 13, for the case of constant coefficients).

The solution of Equation (4.5), satisfying condition (4.6), can be ex~
pressed in terms of the Green function wjich decays exponentially at infinity.

From the exponential decsy of the (reen function, it follows that the
quantity ¢ should tend uniformly to zero with diminishing amount of dis-
turbance, i.e. with deceleration of increase in the concentration of nitric
acid.

An additional consideration of nonlinear terms with respect to y in the
right-hand side of Equation (4.5) will not introduce any essential correc~
tions.

The solution of boundary value problem (4.4) for fixed ( = {* can be
written as
P* =y (E4) -+ ¥ (£y)

In this way, twu points on the o-axis can be assoclated with any value
of the parameter w from a certain defined interval: the point o*lw) ,
corresponding to the first intersection of a trajectory passing through r
with p-axis and the point o*(w) , determined by the solution of the con-
sidered boundary value problem.

iIf x and {, are sufficlently small, the point ¢, will fall to the
left of the saddle ¢ (9,< 9 ). Moreover, the quantity ¥{¢,) is so small
that @< o¥ .

With increasing ¢{, the quantity o, does not decrease and the saddle @
moves to the left, towards the point P . Therefore, there exists such a
value of { that both ¢ and o* will be on the left-hand side of the point
v, at a small distance apart. In view of continulty condition, points o,
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and o* will coincide for a certain intermediate value of (, . The corre-
sponding value of parameter w = w* determines the sought trajectory of the
simplified equation which passes through 7 and P ,

On the other hand there is a fan of curves going out from the point P2 .
Each of these curves corresponds to 8 different value of w ., One integral
curve should necessarily fall into the point ¢ . The value of parameter w,
corresponding to that particular curve
unlquely determines the value of impulse
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propagation velocity. It was shown before that such a value exists.

The above considerations, concluding the construction of an impulse-type
solution (see the phase diagram in Fig. 5 a ), have been based on the simpli-
fied equation. Such an assumption is sdmissible as long as the solution of
full and simplified equations differ by the exponentially decaying factor.
It is easy to see that this is true over the entire length of trajectory,
exeept in the immediate neighborhood of the point P , where the exponent
of the additional term vanishes.

The curve, corresponding to the impulse-type solution, separates two
regions of different behavior, Fig. 6b . Above this curve, the trajectories
of simplified equations, turn round smoothly and intersect the g-axls, Below
this curve the trajectories undergc an abrupt turn and proceed downward,
after having intersected the zero and infinity isoclinic of the simplified
equation.

Approaching the point P , the curvature of trajectorlies increases, becom=
ing infinite in the limiting case.

The above analysis provides an explanation why, irrespective of the small-
ness of ). , the second derivative term in Equation (3.8) cannot be neglected.
The latter remark relates to the curves of the second type passing suffici-
ently close to the point P , including also the sought curve passing through
the point 2P ,
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The performed analysis of the influence of the second derivative term
indicates that the solution of an exact equation does not deviate much from
the trajectory of the simplified equation. This is true everywhere except
in a small neighborhood of the point P , where instead of a corner point,
there is a smooth round off.

This remark is of particular importance since the point P represents 8
state of unstable equilibrium. The solution based on the simplified equation
without a correction term would lead to an infinitely long duration time of

transition through the point P , whereas the time of motion along the smooth
trajJectory is finite,

All considerations, concerning the final phase of impulse propagation
(the vicinity of the point 0 ) relate to the constant value of nitric acid
concentration. However, the velocity of motion, along the found trajectory
is bounded from below. Thus, for small values of x , this velocity will
far exceed the rate of change of concentration. Therefore, the Integral
curves on the phase diagram willl undergo only a slight distortion. This
situation will continue until the representative point reaches the point 0,
where the velocity becomes arbitrarilly small. In that case, the change in
the nitric acid concentration should be taken into account, and it can be
shown that there exists a curve passing through points P and 0 .

5. Qualitative ocomparison with experimental dsta. Conoclusion., 1°. We
shall now turn to a more detalled consideration of a typlcal curve {Fig.2),
describing the change in potentlal with time at a given distance as the
impulse proceeds. The process can be essentlally divided into three stages:

1. A rapid rise in potential to the value in excess of ,, part abcde

2. A slow decrease of potential to the value o, , part efghij

3. Final part Jjkl, where the potential falls rapidly to the zero
initial value,

Such & distinctlon of three stages immediately follows from the consid-
ered theoretical scheme even in the simplest case of an infinitely slow
change in the concentration of nitric acid. 1In the limiting case {n - 0)
the trajectory on the phase diagram of impulse follows the line OTQFP0
(Fig.5).

The physical sense of the existence of three stages in the process inves=-
tigated corresponds to the basic scheme of Bonhoeffer. Initially, there is
a transition from the stable, passive state to the stable active state {part
0P). Then the value of potentiml, in the stable active state, diminishes as
a result of a change in concentration. This stage (QP) will continue until
the equilibrium in the actlve state becomes unstable, (the moment of colneci-
dence of P and ¢ ). Finally, there is a sudden drop in the potential and
the process returns to the passive state (part P0).

In the limiting case considered, the veloclty of impulse propagetion is
determined by taking into account exclusively the first stage of the process
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(on the phase diagram, the trajectory passing through the point ¢ should
intersect the o-axis at the saddle ¢ ). There is a full analogy in the
mathematical description of the first stage of the process and the problem
of flame propagation [5].

2°. The description of impulse propagation in the considered 1imiting
case x - O 18 not sufficiently accurate. During the first stage of the
process, the eXxperimental value of impulse amplitude 1s lower than that pre-~
dicted by the theory under a constant nitric acdd concentration at x - O .
The discrepancy between theory and experiments 1s connected with the finite=-
ness in the value of x , as can be expected from the fact that the length
of intermediate stages, although far exceeding the duration of the first
stages, in fact differs only by one order of magnitude.

If % 1s small, but not zero, l.e, if the rate of change in concentration
is not infinitesimally small, the impulse trajectory intersects the p-axis
to the left of the initial position of the saddle ¢ , according to the re-
sults derived in Sectlon 4, This 1s equivalent to the drop in the impulse
amplitude (see Fig.6a where the dotted line denotes the phase dlagram of an
observed impulse and a full line relates to the present solution).

During the last stage of the process, the experimental curve exhibits a
sharp delay in the potential drop (point J 1in Fig.2). This is again attri~
buted to the finiteness of the quantity x . At that instant, the curve
representative for the impulse-type solution would approach the g-axis {(Fig.
6a), i.e. in the vicinity of P the derivative p = d¢ /dE would diminish,

During the intermediate stages of the process, slight osclilllations in
the value of potential are observed (loop J¢h in Fig.6a), This phenomenon
cannot be explained within a theory based on the simplified equation., Since
the directional field of the simplified equation is directed downward over
the entire segment PQ , the curve corresponding to the impulse cannct pass
from the lower half-plane to the upper half-plane. Conslderation of a full
Equation (3.8) provides again a full explanation of the observed oscillations
but a more detailed analysis is required to solve completely the problem con-
sidered. It can be shown that a consideration of the higher derivative term
does not introduce any major correctlion which is in agreement with experimen-
tal results.

According to the results of paper [8], the excitation travels along the
string with velocity @ = 42.% em/sec. The string and capillary radili are
re= 0.62mm and » = 0.98mm, respectively, and the electric conductivity
of the solution 1s ¢ = 0.52 L/ommcm . The approximate duration time of
the 1nitial stage of the process equals 35 ms, whereas the duratlon time
of the entire impulse 1is approximately one order of magnitude longer. The
change in potential during the first stage 1is approxlmately 1V . The
limiting value of ¢, is of an order 0.5V and the initial value of a cton-
centration of nitric acid 1s such that the current Coigs (Px) equals 10mA/jer?,
In the course of pulse advancing, this value of current increases some one
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hundred times because of a rise in the concentration of nitric acld, and
approaches the value 10A/m which 1s representative for the current Jie
The value of current Jas DY several times exceeds the value of J,,. The
order of magnitude of quantity X can be determined from

T

ﬂV.Ki
20

where T denotes the duration time of the initial phase of impulse corre~-
sponding to the full activation of surface.

Introduce the dimensionless independent variables
n=(/2, © =¢/® (5.1)
where 7 and ¢ denote characteristic scale of a distance and potential
difference, respectively, Equation (3.4) takes the form

7 ' oEQ v XZ2 W w
A6’ —oBzo' —2lee =27 _ 40 (5.2)

The scales Z and ¢ should be so chosen that within the considered
range, the values of all derivatives be of order of unity.

Considering the first and third stage of the phase dlagram and taking as
& characteristic linear element 2 = w7 the following orders for the non-
dimensional parameters in Equation {5.2) are obtained

A ~10-1 —10°, oBZ ~10' — 10?, @E®/Z ~ 10-1 — 10°

XZ: /P ~10° —10%, o /JZ ~10-1 — 10° (5.3)

These estimates indicate that an "inertial"” effect caused by the higher
derivative term in (5.2) is displayed only locally since the corresponding
coefficlient is small.

During the intermediate stage, the characteristic dimension 2 ©becomes
one order larger. Therefore, the term 12“/@ 1s now comparable with the
remaining terms only 1f the quantity ¥ 1s small. Thus, over a considerable
part of the intermediate stage, the potentlial sgould remain c¢lose to the
value o = @, corresponding to ¥ = 0 . This provides a full confirmation
of the previous result that the representative point approaches the point P
on the phase diagram following the moving saddle,

During the first stage of the process, one can distinguish a portion of
a sharp delay in the potential increase {point » 1in Fig.2). The occurence
of this portion cannot be explained within the considered theoretical scheme
and apparently has no connection with any part of the present theory.

The analysis of an experimental technique employed and the results of
tests used for the comparison give indlcations that the considered portion
is caused by the influence of resudual external current applied to indicate
the excitation. The latter current reaches several mA/en® ., This value is
comparable with the proper current generated during the first stage.

3°. The system of governing equations is fairly complicated and there-
fore the performed analysis 1lnvolves solely the investigation of qualitative
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properties of uniformly propagated excitation. A full treatment of the pro-
pagation of self-supporting impulses would require consideration of a whole
collection of problems, the major part of which have a direct connectlon
with the theory of combustion.

In the first place, the problem of uniqueness of a uniformly propagating
impulse should be investigated. The proof presented in Section 4 does not
say anything about the possible number of solutlons. The difficulties arise
here from the fact that in contrast to the theory of combustion, the solution
does not depend monotonously upon the unknown velocity of impulse propagation.

Two further problems are of particular interest. These are the lnvestiga-
tion of stability of a stationary impulse with respect to small disturbances,
and also the more general problem concerning the development of a random
initial distribution of active and passive regions. It 1is clear that from
a certain initial distribution of passive and active regions may develop
either a uniformly propagating impulse or a uniform passive state of a sur-
face. It is important to notice that in contrast to the combustion process
the above listed unsolved problems do not exhaust all possible cases. It may
happen under sultable initial conditions that a series of consecutlive lmpulses
propagate down the string. An important feature of the present model 1is the
possibility of the occurrence of periodical behavior. A simple example of
such periodical behavior is an interchange of active and passive states where
an external current is transmitted.

All remarks mentioned above concern not only an electrochemical model of
nerve, but to a large extent also a nerve itself. A quantitative comparison
of experimental results and theoretical predictions can be performed using
numerical analysis. This would also permit solution of an inverse problem,
i.e. to determine parameters of the system from experimental data as func-
tions of the potential.
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