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The problem of proration of exaltation along a nerve is of considerable 
interest and has drawn the attentton of many investigators. The difflaulies 
in the treatment of this problem arlse mainly from the ilndeflniteness and 
unclear nature of phisico-chemical processes which accampany and stipulate 
these phenomena, 

A detailed presentation of the current state of knowledge of this subjeat 
can be found in a recent book of Hodzhkin Cl]. 

As a certain model of the process for the propagation of an Impulse along 
a nerve, Ostvald and later Bonhoeffer [2 and 31 suggested a simple electro- 
ahemiaal system. 

In the present paper the above-mentioned system is used to develop a mathe- 
matical invest~6at~on of the impulse propagation proaesa, The ~the~t~cal 
scheme of this phenomenon is based on Ideas introduced by Bonhoeffer and his 
school concerning electrochemical processes which ensure the propagatlon of 
an impulse l 

The system under con- 
sideration consists of a 
ferrua strlnn (1) plaoed 

L in a capillaGy‘(3)-filled 
I with concentrated nit&a 

acid (2), Flg.1. Two pro- 
cesses result from the 
titeraatlon of nitria acid 
and iron. These are dis- 
aoiution of iron manlfes- 
ting in the departure of 

ions to the solution and oxidation of iron which results Zn forming a dense 
film of ferric oxide (4) on the strZng &w-face. If the conaentration of 
nitric acid Is sufficiently strong the latter process becomes predominant. 
Sinoe the oxide film prevents the process of dissolution from continuing, a 
state of equllibrlum is set up in which processes of dissolution and oxlda- 
tion practically cease. The oxide film is spread over the entire surface of 
Iron and the potential difference between the iron and solution assumes a 
constant value + 

!fhis state of iron is called a “passive” state and the process of transi- 
tion into this state is termed Wpassivation”. If the potential differenae 
1s artificially decreased to a certain limiting value, then the oxide film 
will be destroyed and iron will pass to the active state charaaterlzed by 
the vigorous otidat2on process. Si~~t~eously nitric acid is generated 



with an essential influeneeonth~ run of the procees, In the equilibrium 
state the whole iron surface is covered by oxide film, 

Let us assume that the film has been artificially destroyed over a certain 
region of the string. Since the oxide film has a high electrical resistance, 
the current flows into the destroYed surface, ~o~aequently, the difference 
between the Potential6 af the iron and the solution diminiehes. 1f the&men- 
alone of the destroyed area are sufficiently large, 
differenoe Will be 80 pronounced that even on the string surface still covered 

the drop in the potentlal 

by oxide film, the potential difference reaches its limiting value, ~h1.6 in 
turn Will caufje vaniehlng of the oxide film in the vicinity of the initially 
de@zowi area and the front of the d~st~~ban~e starts to move in both direc- 
tions along the Rtring surface. Honever, during Bn active state of the sur- 
face, the String ~111 not be completely dissolved mainly because of the and 
increase of concentration of nitric acid. The newly created oxide coating 
Will. eventually lead to the passivation process, hence the passlvation f'ront 
ProPagate in both directions behind the activation front, In this way two 
disturbances ProPa8ate in opposite directions along the string surface (sec- 

tions 5 in Flg.1). 

The pulse advancing is recorded by 
measuring the differences in poten- 
tials cp between the solution and bon, 
A typical plot of the dependence of (o 
upon time t is shown in Fig.2, taken 
from the paper [4l. 

Experiments [2 and 3) have proved 
that the pulse becomes stationary and 

a 
propagates with constant velocity with- 
out distortion In a short time after 

Fig, 2 the initiation of the process. In the 
following the theory of propagation of 
the stationary pulse associated with 

generation and absorption of energy will be considered. 

1, Sb4bmmaC of \m, problem and berio l qurtionr, lo. According to the 

a~8~ption of Bonhoeffer and his school, the following processes take place 

on the boundary between iron and solution: 

1) Dissolution of iron on the active surface. 

2a) Formation of an oxide coating tran~ferrl~ the active surface into 

the paseive . 

2b) Dialntegration of the oxide Coating traneferring the Passive sur- 

face into the active. 

3a) Qmeration of nitric acid on the active surface. 

3b) Generation of nitric acid on the Passive surface. 

Each of these Processes is characterized by the density of electric current 

3 (positive or negative), which is proportional to the amount of conveyed 

substance. This amount depends upon the local value of the potential differ- 

ence rp between the iron and the solution. The above-mentioned relation- 

ship la shown In the diagram, the original version of which, l41, differes 

slightly from the presented here in Yig.3. The difference in potentials is 

measured with reference to the equilibrium stete C@x’@spOndiW to the entirelY 

passive state (the unity on the current axis corresponds to 0.65 A/6$ and 

the currents j,, and ,_jab are displayed out of SCalef, The generation PrO- 

~egg of nitrio acid is autocatalitie, i.e. its rate depends on the Poten- 



tlal difference cp as well as on the concentration o of nitric acid within 

the boundary layer. For sufficiently weak concentrations the latter depend- 

ence can be assumed as a linear function. Therefore the current density, 
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shown In Pig.3, corresponds to the unit concentration. The true value of 

current density Is obtained from curves ,L. and j,, (Fig.2), through a 
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Fig. 3 

multlpllcatlon by a local value of bound- 

ary layer concentration of nitric acid. 

During the Interchange of active and 

passive processes intermediate states 

are also possible where the string sur- 

face 1s partly covered by oxide coating. 

There are indications that the oxide 

film Is generated or destroyed at once 

through its entire thickness [31. 

‘Ja 

‘28 

Fig. 4 

Assuming this as a hypothesis, the complete description of the state of 

the surface at a given string point can be obtained In terms of a rate of 

activation Q which Is a relative area of activation regions. (It 1s ae- 

sumed that a physically lnflnlteslmal element of the surface Involves a suf- 

ficiently large number of active and passive regions, as shown In Fig.4 by 

white and shaded areas). 

The rate of transport of substance on the surface In the course of any 

reaction Is proportional to the corresponding current density. Therefore, 

In a unit time, the fraction of surface &jZa, Is converted_from the active 

to the passive and the fraction K (1 - a)ljZbl f rom the passive state to 

tha active. The rate of Increase In the share of active surface can thus be 

expressed [4] as aa 
at = --K [a]za + (l --)]!zb] 

Since the current can flow Into the string surface solely from the eolu- 

tlon, therefore, assuming the electric conductivity v as a constant, we 

have for the total density the following expression: 

where r0 denotes the string radius in the cylindrical coordinate system 

(f, cp, P) and the r-axis coincides with the axis of capillary, r Is the 
distance from the latter. 
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!Phe nitric acid produced In the course of reactions diffuses into the 

solution. The rate of deneratlon of acid 18 proportional to the total den- 

sity of current is = k& + (1 - a) jSbl c . Thus, the expression for the 
flux of nitric acid on the string surface haa a form 

where D stand5 for the coefficient of diffusion, and B denotes a propor- 

tionality coefficient. 

In order to obtain a full system of equations, it remains to write down 
equation5 for the distribution of potential cp and concentration of nitric 

acid c in the t3OlUtiOn as well as the boundary conditions on the capillary 

Wall. The dietributlon of potential qi satisfies the Laplace equation, 

whSah in view of axial 5Ymmetry of the problem, has the form 

For distribution of concentration C(F, a, t) la described by the equation 

of diffusion 
(1.5) 

where n(C) denote5 the rate of absorption of nitric acid in the volume of 

5olution in the course of certain auxiliary reactions. The significance of 

the5e reaction5 consists in the supporting of concentration on a specified 

leveL o. in the abeence of Impulse. Hence, the function n(C) should satisfy 

the following conditlone: 

4 (Co) =o, 9 (0 <o iot c>co, Q(C) >o for c<s 

In practice, the above mentioned reactions are accomplished by adding to 

the solution a definlte amount of urea. 

Assuming the capillary wall as Impermeable and electrically Insulated, the 

boundary conditions on the wall take the form 

where I? is the capillary radius, 

Thus, the solution for potential 9 and nitric acid concentration C 

can be determined by considering Equations (1.4) and (X.5), boundary condi- 

tions on the capillary wall (1.6) and also Formulas (1.1) to (1.3) which 

after elimination of 0 yield two differential conditions relating values 

of 0, and C=c on the string surface. It should be mentioned that these 

boundary values of cp and c are of particular Interest in the problem 

under consideration. 

2". In the following, we shall consider the solution of the derived 

equations, corresponding to the condition of uniform steady propagation of 

a single pulse of excitation. For a pulse travellfng, to the left with con- 

stant velocity w this means that quantities cp, o and C depend upon the 

argument c - z + wt , but not upon a and t , separately 
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cp =cp (5, r).), c =t: (5, d, c = c (0, a ==a (5) (4.7) 

Ahead and behind the impulse, the surface undergoes a passive state, henae, 

a(* 0) * 0 * Since the excitation propagates along the undisturbed, passive 

state of string, the following relation holds: 

rp(-- co, r) = 0, C(- cQ,r) =c, (1.8) 

The ~themat~cal problem formulated In this way is overdetermined, and 

for arbitrary value of w does not have in general a nontrivial solution. 

The requirement of the existence of nontrivlal solution provides the condi- 

tion for the determination of pulse velocity w , which is found as an inde- 
pendent result in the course of solution of the problem. This situation is 

also characteristic for the theory of propagation of gene of Kolmogorov, 

Petrovskli and Piskunov (53, and for the theory of flame propagation of Zel'- 
dovich c63. There exists a deep internal relation between these problems and 

that considered in the present paper, as will be shown later. 

3" - For the complete solution of the problem, it would be necessary to 
determine the range of parameters in which the required form of the solution 

exists (this corresponds to the known "range problem" in the theory of flame 

propagation). That complicated problem is beyond the scope of the present 

paper. 

2. mlfona pFopqa*iori of lnpulr~. In view of (1.7), the basic system 
of Equations (1.1) to (1.6) and (1.8) describing a uniform propagation of 
pulse to the left, with velocity w , take the form 

w$=---I(tai,a+(f--a)i,b] fW 

-a) j%b + [ajio. + (I - a> i3bl 12 (2*2) 

(2.31 

(2.4) 

(2.5) 

Let us assume that the clearance 6 between the string and capillary wall 

is sufficiently small so that the change in the potential over the clearance 

thickness can be neglected. The value of the potential an the string bound- 

ary can thus be replaced by the mean value of the potential over the clear- 

ance surface. 

This assumptlon together with (2.2) yields 
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- 06 3 = a tilt iaa) + (1 - a) j2tl + [djsa + (1 - a) j3bl c (2.@ 

where the previous notation for cp Is maintained. Thus, the problem of uni- 

form Propagation of pulse has been reduced to the solution of Equations (2.1), 

(2.8) and (2.5) with the boundary conditions (2.3) and (2.7) and the second 

condition (2.6), (recall c(FO, C) - c(c) ). 

In the following, we shall be concerned wlth the problem of existence of 

the solution, which satisfies all conditions listed above, and has the form 

of a uniformly propagated pulse. In the present paper, the qualltatlve ana- 

lysis of characteristic singularities in the potential distribution will be 

also given. 

3. PFopbgatlon of the l otivrtlon Front and oondltionr of lmpulrr rxlrt- 
l noo. lo. Qualitative investigation of the 

governing system . Finiteness of actlva- 

tlon front velocity. We shall starttithtb proofthattheve- 

locity of activation front Is alms finite. At the pulse front ( = 0 , the poten- 

tial cp reaches the llmltlng value, whereas for all points ahead the front 

of excitation (1 = 0 . Indeed, for C - - m , we have rp -+ 0 and a + 0 , 
according to the boundary condition (2.7). Consequently, for sufficiently 

large absolute value of 6 , the following Inequality should hold @ > 0. 
At the same time cp c 'p* and, hence, j,,= 0 , whereas j2.g 0 . Therefore, 

Equation (2.1) can be satlsfled only If a G 0. The activation ratio a 

becomes variable for all 6 z 0 , I.e. everywhere to the right of the llmltlng 

point qr . 

2O. The second boundary condition for 

the potential . According to boundary condition, the surface 

activation ratio should drop to zero for 5 - + m . It follows from Equation 

(2.1), that In this case the current density Jab vanishes, what Implies the 

condition _ It can be shown that under the natural requirements of 

flnlteness of the potential, cp tends t? ztro with 6 - + m . Indeed, If 

C -m, by virtue of (2.8) cp cannot continue to exceed certain fixed, 

arbitrary small value, since this would Imply the unboundedness of cp . Among 
the Integral curves of (2.8) passing through the region of sufficiently small 

cp , there Is one curve passing through the origin bi = 0 , (see CT]), Chapter 

XIII, Section 4, Theorem 4.1). Finally, the curves passing through the 

region of small cp will never return back to that region according to Equa- 

tion (2.8) and condition a - 0 . Therefore, the second boundary condition 

for the distribution of potential has been derived from the single assump- 

tion concerning the boundedness of potential cp 

cp(34 =o (3.1) 

3". Basic equation for the potential 

In the case of slowly variable nitric 

acid concentration . Eliminating (1 from (2.1) and (2.8), 
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we obtain 

(3.2) 

where 

B=- Jb'J ;J’J, > o, E=$<O 

x = jab - AJb, J = il + jZa---jab + (jm-jab) c, Jb = jzb + jabc (3.3) 

S = _ dbJ- (iaa-jab) Jb 
52 , 441 = - f (jsa --jSb) !g 

and a dot denotes differentiation with respect to cp for constant c . As 

It Is seen from Equation (2.x), for small values of u - B/o , the rate of 

change of nitric acid concentration Is small. Thus, the term with dc/dC 

In (3.2) can be neglected,to give 

Wd &+,” _ $ VI _ wF (p”(p’ = X _ KJ $” (3.4) 
It should be emphasized that the latter equation does not become self- 

contained in the case n#O. The coefficients in this equation depend on 

5 through the slowly variable function c(c) . The full system of govern- 

ing equations Involves Equation (3.4), appropriate equation describing the 

concentration of nitric acid together with corresponding boundary conditions. 

In the following, conslderable.attentlon will be given to Equation (3.4) 

which 1s the basic equation for all further results. The reason why Equation 

(3.4) can be considered Independently Is that under a slow change In nitric 

acid concentration, the character of this change is not Important. 

4". Ne cesslty for the account of the 

production of nitric acid . Nevertheless the change 

In nitric acid concentration cannot be entirely neglected (by assuming 

x = e/n = 0). It will be shown that if the concentration Is assumed to be 

constant, no Impulse-type solution exists. 

In the case of s = 0 and 6 < 0 the problem reduces to the solution of 

the following equation: 

- 06 3 = jabc, 
dC= 

c = co- const (3.5) 

with boundary conditions 

cp (- co) =o, q (0) =(Pk (3.6) 

(Equation (3.5) has been derived from (2.8) by putting a. E 0 and jab =0 

for m < Q). The existence and uniqueness of the solution of the latter 

problem can be proved by means of direct integration. 

For 6 > 0 Equation (3.4) is an exact equation and Its coefficients do 

not depend on C . The boundary conditions for Equation (3.4) can be obtatid 

from the requirements of continuity of cp and c for C =O,theyare: 

'Q, (t-0) =q (- 0) = (Pk, 9’ (+O) =cp’ (-- 01, cp” (+O)=cp” (- 0) (3.7) 

where cp'(- 0) and m"(- 0) are Independent on w and are determined from 

the solution of problem (3.5) and (3.6). 
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The problem described by (3.4), (3.1) and (3.7) Is overdetermined since 

there are four conditions for the third order differential equation. This 

circumstance gives a possibility to determine the aown velocity of pulse 

propagation. 

It will be shown that the range of possible velocities of pulse propagation 

is bounded. Assume the converse. In the course of the process of pulse pro- 

pagation, the value of potential cp necessarily attains the maximum. Con- 

sider an Inflection point C* on the extreme left of the diagram ~(6) where 

c>o. According to the deflnltlon, rp = mr for 5 = 0 , whereas within 

therange O.:Cc 6*,thefunctlon 'p, together with Its first derivative 

(p', Increase and the second derivative cp" tends simultaneously to zero. 

Finally, the value (r'(O) is independent on velocity w . These statements 

are In contradiction with Equation (3.4) written down at the point of inflec- 

tion. 

Since the range of admissible pulse velocities Is bounded, it Is always 

possible to find such a relation between parameters that the coefficient of 

third derivative term In Equation (3.4) Is small for all velocities from the 

considered range. 

Let us show that under the latter assumption, the problem (3.4),(3.1) and 
(3.7) has no solution (I.e. the pulse does not exist) if the mechnlsm of 

production of the nitric acid Is off. 

Since the coefficient of the third derivative term has been assumed to be 

small, Equation (3.4) becomes in some sense a second order equation. It IS 

convenient to change variables p = dv fdt and t = 5 / 1/& and consider 

behavior of Integral-curves on the plane (P, 5) . Equation (3.4) in new vari- 

ables takes the form (3.8) 
I I 

P$A -cooEp)= X+oRp-hp~(p~)(o=Ui,K1/~, h=o/J) 

Consider first a slmpllfled equation without the second term In the right- 

hand side of Equation (3.8). This Is a first order equation and the phase 

diagram for that equation is shown in Flg.5. 

The point T on the phase diagram 

corresponds to 5 = 0 and its position 

does not depend on w . (The curve OT 

relates to the solution of the problem 

(3.5),(3.6)). The curve representing a 

Fig. 5 

desired solution should follow the direc- 

tional field on the path from T to 0. 

It Is seen from Fig.5 that in the case 

of simplified equation, this cannot occur. 

The situation will not be changed if an 

account is made for the small, disre- 

garded third derivative term, i.e. if a 

full equation (3.8) Is consldered. 



Indeed, the sought trajectory of the considered point should necessarily 

Intersect the rp-axis within a defined distance right of the point P . This 

follows from the fact that the trajectory passing through T has a posltlve 

slope and, as can be shown, the tangent of trajectory Is vertical nowhere 

except on the cp-axle. (The last statement Is true for arbitrary trajectory 

corresponding to the full equation). It Is easy to see that the representa- 

tive point after having Intersected the cp-axis should necessarily depart from 

this axis by a finite distance, (otherwise the second derivative term can be 

neglected in (3.8) which Is not consistent with the behavior of curves descrlb- 

lng the solution of slmpllfled equation). 

The zero lsocllnlc of the slmpllfled equation Is given by Formula 

p--&X 
Above this line, trajectories of the full equation cannot have a maximum and 

below this line a minimum. Indeed, the condition for a maximum requires 

$=o and p"<o , whereas Equation (3.8), written down for example at a 

point above the line (3.9), gives the converse. 

!Fhua, If the sought integral curve Intersects the segment PQ (Including 

also point 4 ), it should also Intersect the line PS within a defined dls- 

tanoe from the point P . This la true elnce the point P cannot be approaches 

by the trajectory at an arbitrary small distance. However, If the represent- 

ative point approaches the point of Intersection with the lsocllnlc of infln- 

lty, the slope of trajectory increases until the term with second order derlv- 

ative becomes significant, preventing the slope of the trajectory to be ver- 

tical. 

On the line PS , the elope of the trajectory aeeumee a large positive 

value If the coefficient of the second derivative term ln (3.8) Is suffl- 

clently small. Furthermore, the trajectory can approach the line Pi, only 

from below of the point of Intersection with PS slnoe otherwise there would 

be a mlnlmum between PR and Ps but this cannot occur. Finally, there 

exists such a strip enclosing the line PR that Its width tends to zero with 

the second derivative of (3.8). Inside the strip, the trajectory has a 1arEe 

negative slope. Indeed, as previously, the trajectory cannot surpass a 

finite distance within the strip. Consequently, 

within the strip by the distance of the order of 

Inside the strip Equation (3.8) simplifies to 

0 d2WY 
;IrdcpB= 

X+ oBp 

P +* 
where the right-hand side can now be regarded as 

the trajectory is 

strip width. 

give 

. . 

constant. Taking 

advanced 

(3.10) 

Into 

account that the coefficient of the second derivative term Is small, we come 

to the desired result. 

Thus, the trajectory Intersecting lines PS and PR should have a large 

positive slope near PS and large negative slope near PR . However, thla 

Is not possible since below the line (3.9) the trajectory cannot attain a 
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minimum. 

We shall prove now that an integral curve corresponding to the impulse 
cannot meet the cp-axis to the right of the point 0 . Indeed, suppose the 

cp-axis has been intersected to the left of the point Q . It Is now possible 

for the representative point to follow the directional field of the zlmpll- 

fled equation after having passed through the narrow strip surrounding V- 

axis. This would be no longer possible In the case when the location of 

interZeCtiOn point 18 to the left of the point Q . Now, the directional 

field 1s pointed opposite to the motion of the representative point, thus 

Preventing the trajectory from leaving the narrow strip surrounding the 

cp-axis where the second derivative Is essential. The arguments advanced 

Imply that the sought Integral curve cannot remain within the strip all the 

time. 

This completes a proof that no pulse of excitation Is possible for X= 0. 

4. Oomtruotion and qualltrtlvr analy~lr of thr imgulra=tJpr rolutlon. 
lo. General considerations. The proof given 

above not only provides a confirmation of nonexistence of the pulse cxclta- 

tlon In the caze when the mechanism of change in nitric acid concentration 

Is absent, but also Indicates the nature of this mechanism. 

Let us aszume that x 13 small, although not zero. Then concentration 

0 of nitric acid becomes variable, Equation (3.4) Is no longer self-contained 

and the phase diagram, Flg.5, loses Its stationary character and changes 

slowly. 

In particular, the saddle point 0 moves to the left until It reaches 

the point P (*). This makes possible that the trajectory returns to the 

origin. 

Since the change In the concentration of nitric acid is slow, the derived 

results, concerning the trajectories of the representative point, remain 

valid everywhere except the small nelghbo-hood of singular points P and Q . 

The motion of the representative point Is slowed down so that the velocity 

of the saddle Q , resulting from the variation In concenratlon c , becomes 
comparable with the velocity of the representative point. In order to return 

to the origin, the representative point should fall within a small neighbor- 

hood of the moving saddle and then together with the neighborhood of Q 

approach the singular point P . This IS possible solely In the case of non- 

constant concentration of nitric acid. 

Besides the small parameter I( determining the rate of change of concen- 

tration of the nitric acid, there Is another small Parameter 1 . This 13 

the coefficient in the term with the highest derivative In Equation (3.8). 

*) For sufficiently slow absorption Intensity p and diffusion coefficient, 
the increasing concentration c will exceed this value for which Q coln- 
cldes with P . 
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Equation (3.8) In the immediate neighborhood of an arbitrary regular point 

(w, PI.), on the plane f+, P , can be writAien in the form 

where the subscript 1 denote% the value of corresponding coefficient at 

the point cp - cpX and p - PI . 

The solution of Equation (4.1) 1% expressed as 

where C 1s a conatan~ of Integration. The first term in Formula (4.2) 

aorresponds to the solution of simplified equation with X = 0 , whereas the 

second term represents a correction which may Increase or decay exponentially 

depending upon the sign of coefficient 

(A, - ~~~~~) 1 (@Pl 

and the direction of change In cp , 
(4.3) 

2” . Construction of the solution . !&e 

solution of the problem (3.5), (3.6) is independent of the value w over 

the part QT oft the trajectory. Since the concentration of nitric acid 

varies slowly, the quantity c can be regarded as constant and equal to oc . 
Now, the problem is to separate one trajectory which correspond% to all pre- 

scribed conditions of impulase propagation. Ass@ng variable concentration 

of nitric acid, let UB examine 8 possible motion of the representative point 

along the part of the trsjectory, behind the point T . Inside the quadrant 

FPQ the quantity (4.3) is positive. S~lt~eously cp increases and the 

correction for the trajectory, resulting from the consideration of full equa- 

tion (second term in Equation (4.2)), tends to zero. Hence, the further 

motion follows the trajectory of simplified equation corresponding to XW- 0, 

This property remains valid even after the intersection of this trajectory 

with the rp-axis, since sim~t~eo~sly coefficient (4.3) changes Its sign and 

the direction of change of cp becomes reveraed. Thus, the preliminary con- 
struction of impulse trajectory can be based upon the slmpllfled equation. 

Since the rate of change of concentration, and consequently the velocity 

of saddle Q are small, there exists such an interval of w that all trajec- 

tories passing through T Intersect the ($-axis left of the point Q . Each 

value of w uniquely determines the distribution of concentration c({, w). 

The computation of the nitric a&d distrlbut~on can be simplified by the 

replacement of function j, by the finite function, vanishing for IWI > A , 
where N is a sufficiently large number. Clearly, the latter assumption 

will distort only those trajectories which do not correspond to the lmpul.%e, 

Let us denote by C,(UJ) the value of C , corresonding to the first inter- 
section of trajectory with the cp-axie under given UI . The sought solution 

of the boundary value problem, for the simplified equation (3.9), should 

conform to conditions 

V(W) =(Pk* 9’ (5,) = 0 (4.4) 
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The coefficients in Equation (3.4) CM be determined using the approprlate 

distribution of o(C, IB) . In the limiting case x 4 0 the solution of the 
formulated boundary value problem should approach the funation cp - me(C) , 

where cpo denotes the coordinate of saddle Q . 'Phe condition of smoothness 
Implies that for small positive R the solution should close to the value 

N(6) * Thus, the simplified equations and corresponding boundary conditions 

can be written in the form 

(4.6) 
According to the assumptions conaernlng the flnltenese of Js the derlva- 

tives a' and cp' uniformly tend to zero with s _ 0 , and the first term 

in the right-hand side of Equation (4.5), (a forcing term), can be made 
arbltratlly small. The aharacterlstla equation aorreapondlng to Equation 

(4.5) has alwaJrs one positive and one negative root. Neither of them vanish 

as c varies. Th5.s implies that the simplified equation (4.5) without the 

f5ource term has always a solution *@ , which uniformly tends to zero with 

c-e. (This statement is a generalization of corresponding theorem proved 

in 173, Chapter 13, for the case of constant coefficients). 

The solution of Equation (4.5), satisfying condition (4.6), can be ex- 

pressed in terms of the Qreen function wjlch decays exponentially at InfiniW. 

From the exponential decay of the Green function, it follows that the 

quantity ) should tend tmlformly to zero with diminishing amount of dis- 

turbance, i.e. with deaeleration of increase in the concentration of nitric 

acid. 

An additional consideration of nonlinear terms with respect to 1 in the 

right-hand side of Equation (4.5) will not Introduce any essential correc- 

tions. 

The solution of boundary value problem (4.4) for fixed 6 - C+ can be 

written as .cp* = %J (5,) -t $J (t,) . 
In this way, two points on the cp-axis can be associated with any value 

of the parameter w from a certain defined Interval: the point cp*(w) , 
corresponding to the first Intersection of a trajectory passing through .T 

with m-axis and the point m*(W) , determined by the solution of the con- 

sidered boundary value problem. 

If R and <,, are sufficiently small, the point gt, will fall to the 

left of the saddle Q (cc,< rpo). Moreover, the quantity v({,) is so small 

that 'pa cp* . 

With increasing C, the quantity cp, does not decrease and the saddle 4 

moves to the left, towards the point P . Therefore, there exists such a 

value of C that both 4 and cp* will be on the left-hand side of the point 

m+ at a small distance apart. In view of continuity condition, points q,, 
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and cp* will coincide for a certain intermediate value of 

spondlng value of parameter u) I ut* determlnea the sought 

almpllfled equation which passes through T and P . 
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cw ’ The oorre- 
trajectory of the 

C&i the other hand there Is a fan of’ curves going out from the point P . 
Each of these curves corresponds to a different value of ut , One Integral 

Curve should necessarily fall Into the point 0 . The value of parameter UJ, 

corresponding to that particular curve 

uniquely determines ths value of impulse 
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propagation velocity, It was shown before that such a value exists. 

The above considerations, concluding the construction of an impulse-type 

solution (see the phase diagram In Fig. 6a), have been baaed on the elmpli- 

fled equation. Suah an assumption Is admissible as long as the solution of 

full and simplified equations differ by the exponentially decaying factor. 

It is eaay to see that this Is true over the entire length of trajectory, 

exapt ln the lmnediate neighborhood of the polnt P , where the exponent 

of the additional term vanishes. 

The curve, corresponding to the Impulse-type solution, separates two 

regions of different behavior, Pig. 6b. Above this curve, the trajectories 

of’ almpllfled equations, turn round smoothly and Intersect the cp-axis. Below 

this curve the trajectories undergo an abrupt turn and proceed downward, 

after having Intersected the zero and infinity leocllnlc of the simplified 

equation. 

Approaching the point P , the curvature of trajectories Increases, becom- 

ing infinite ln the llmitlng case. 

The above analysis provides an explanation why, irrespective of the small- 

ness Of & , the second derivative term in Equation (3.8) cannot be neglected. 

The latter remark relates to the curves of the second type passing suffici- 

ently close to the point P , including also the sought curve passingthrough 

the point P . 
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The Performed analY8ls of the influence of the second derivative term 

indicates that the solution of an exact equation does not deviate much from 

the trajectory of the slmplifled equation. This is true everywhere except 

in a small neighborhood of the point P , where instead of a corner point, 
there is a smooth round off. 

This remark 1s of particular Importance since the point P represents a 

state of unstable equilibrium. The solution based on the simplified equation 

without a correction term would lead to an Infinitely long duration time of 

transition through the point P , whereas the time of motion along the smooth 
trajectory is finite. 

All considerations, concerning the final phase of impulse propagation 

(the vicinity of the point 0 ) relate to the constant value of nitric acid 
concentration. However, the velocity of motion, along the found trajectory 
is bounded from below. Thus, for small values of x , this velocity will 

far exceed the rate of change of concentration. Therefore, the Integral 

curves on the phase diagram will undergo only a slight distortion. This 

situation will continue until the representative point reaches the point 5, 

where the velocity becomes arbitrarilly small. In that case, the change in 

the nitric acid concentration should be taken into account, and It can be 

shown that there exists a curve passing through points P and 0 . 

Is. Qual2tative oomp&riion wfth elcgwQnont8l drtr, ~Oonolurton, 1". We 

shall. now turn to a more detailed consideration of 8 typical curve (Pig.2), 

describing the change in potential wlth time at a given distance as the 

impulse proceeds. The process can be essentially divided into three stages: 

1. A rapid rise In potential to the value in excess of rpr, part abedi? 

2. A slow decrease of potential to the value tpr , part ejghij 
3. Final part jt?l, where the potential falls rapidly to the zero 

initial value, 

Such a distinction of three stages immediately follows from the consid- 

ered theoretical scheme even in the simplest case Of an infinitely slow 

change in the concentration of nitric acid. In the limiting case (n - 0) 

the trajectory on the phase diagram of impulse follow5 the line OTqPO 

m!T.5). 

The physical sense of the existence of three stages in the Procees inves- 

tigated corresponds to the basic scheme of Bonhoeffer. Initially, there Is 

a transition from the stable, passive state to the stable active state (Part 

5P). Then the value of potential, in tine stable active state, diminishes as 

a result of a change In concentration. This stage (gP) will continue unti,l 

the equilibrium in the active state becomes unstable, (the moment of coin&- 

dence of P and Q ). Finally, there is a sudden drop in the Potential and 

the process returns to the passive state (part PO). 

In the limltlng case considered, the velocity of Impulse propagation 1% 

determined by taking into account exclusively the first stage of the Process 
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(On the phase diagram, the trajectory passing through the point 0 should 

intersect the rp-axls at the saddle 0 ). There is a full analogy In the 

mathematical description of the first stage of the process and the problem 
of flame propagation [53. 

2". The description of impulse propagation in the considered limiting 
case n - 0 is not sufficiently accurate. During the first stage of the 

Process, the experimental value of impulse amplitude is lower th%n that pre- 

dicted by the theory under a constant nitric acid concentration at s -. 0 . 
The discrepancy between theory and experiments Is connected with the flnlte- 

ness in the value of K , as can be expected from the fact that the length 
of Intermediate stages, although far exceeding the duration of the first 

stages, in fact differs only by one order of magnitude. 

If N is sme%ll, but not zero, i.e. If the rate of change in concentration 

Is not infinitesimally small, the impulse trajectory intersects the ep-axis 
to the left of the Initial position of the saddle 0 , according to the re- 
sults derived in Section I(. This is equivalent to the drop In the impulse 

amplitude (see Fig.Gawhere the dotted line denotes the phase diagram of %n 

observed impulse and a full line relates to the present solution). 

During the last stage of the process, the experimental curve exhibits a 

sharp delay in the potential drop (Point j in Fig.2). This is again attri- 

buted to the finiteness of the quantity x . At that instant, the curve 

representative for the impulse-type solution would approach the p-axis (Pig. 

6a), i.e. in the vicinity of P the derivative p =ctcp /dE would diminish. 

During the fntermediate stages of the process, slight oscillations in 

the value of Potential are observed (loop f@Qh in Fig.6,). This phenomenon 

cannot be explalned within 8 theory based on the simplified equation. Since 

the directional field of the simplified equation is directed downward over 

the entire segment PQ , the curve corresponding to the impulse cannot pass 

from the lower half-plane to the upper half-plane. consideration of a full 

Equation (3.8) provides again a fu12 explanation of the observed oscill%tiOns 

but a more detalled analysis is required to solve completely the problem con- 

sidered. It c%n be shown that a consideration of the higher derivative term 

does not introduce any major correction which is in agreement with experimen- 

tal results. 

According to the results of paper 1[8j, the excitation travels along the 

string with velocity W - &2.$er&ec. The string and capillary radii %re 

ro= 0.62mm and R I: 0,98mm, respectively, and the electric conductivity 

of ths solution is u = 0.52 l/ohmcm . The approximate duration time of 

the In?.tial stage of the Process equals 35 ms, whereas the duration time 

of the entire impulse 1s approximately one order of magnitude longer. The 

than@ In P&or&la1 during the first stage is approximately 1V . The 

limltiug value of 'pk is af an order 0,gV and the Initial value of a Gon- 

centration of nitric acid is such that the current c~sb(tpiJ equals lOmA/cnF, 

In the course of pulse advancing, this value of current increases some one 
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hundred times bccnuse of a rise In the concentration of nitric acid, and 

approaches the value lOA/cn? which Is representative for the current j,. 

The value of current js, by several times exceeds the value of j,,. The 

order of magnftude of quantity K can be determined from 
f 

X-- 
6, 

where 7 denotes the duration time of the initial phase of Impulse corre- 

sponding to the full activation of surface. 

Introduoe the dimensionless Independent variables 

11=5/z, @=cp/@ (5.1) 

where E and @ denote characteristic scale of a distance and potential 

difference, respectively, Equation (3.4) takes the form 

A@--- oBZ@’ - @!q? @‘fry - x: g @“’ 

The scales 2 and 0 should be so chosen that within the 

range, the values of all derivatives be of order of unity. 

Considering the first and third stage of the phase diagram 

a characteristic linear element 2 = VT the following orders 

dimensional parameters in Equation (5.2) are obtained 

(5.2) 

considered 

and taking as 

for the non- 

A - IO-’ - 100, oBZ - 101 - 102, ozm / 2 - IO-’ - IO0 

x2? / CD - 102 - 103, w/JZ- IO-1 - 100 (5.3) 
These estimates Indicate that an "inertial" effect caused by the higher 

derivative term in (5.2) is displayed only locally since the corresponding 

coefficient is small, 

During the intermediate stage, the characteristic dimension 2 becomes 

one order larger. Therefore, the term Xz"f@ is now comparable with the 

remaining terms only If the quantity K is small. Thus, over a considerable 

part of the Intermediate stage, the potential sgould remain close to the 

value cp I cpo, corresponding to X I 0 . Thls provides a full confirmation 

of the previous result that the representative point approaches the point P 

on the phase diagram following the moving saddle. 

During the first stage of the process, one can distinguish a portion of 

a sharp delay in the potential increase (point I? in Pig.2). The occurence 

of this portion cannot be explained within the considered theoretical scheme 

and apparently has no connection with any part of the present theory. 

The analysis of an experimental technique employed and the results of 

tests used for the comparison give Indications that the considered portion 

is caused by the Influence of resudual external current applied to indicate 

the excitation. The latter current reaches several mA/cti . This value is 

comparable with the proper current generated during the first stage. 

3” f The system of governing equations is fairly complicated and there- 

fore the performed analysis involves solely the investigation of CpalitatIVe 



properties of uniformly propagated excitation. A full treatment of the pro- 

pagation of self-supporting Impulses would require consideration of a whole 

collection of problems, the major part of which have a direct connection 

with the theory of combustion. 

In the first place, the problem of uniqueness of a uniformly propagating 

impulse should be investigated. The proof presented In Section 4 does not 

say anything about the possible number of solutions. The difficulties arise 

here from the fact that In contrast to the theory of combustion, the solution 

does not depend monotonously upon the unknown velocity of impulse propagatlon. 

Two further problems are of particular Interest. These are the lnvestlga- 

tion of stability of a stationary Impulse with respect to small disturbances, 

and also the more general problem concerning the development of a random 

initial distribution of active and passive reglons. It is clear that from 

a certain Initial distribution of passive and active regions may develop 

either a uniformly propagating Impulse or a uniform passive state of a sur- 

face. It is important to notice that In contrast to the combustion process 

the above listed unsolved problems do not exhaust all possible cases. It may 

happen under suitable Initial conditions that a series of consecutive impulses 

propagate down the string. An Important feature of the present model is the 

possibility of the occurrence of periodical behavior. A simple example of 

such periodical behavior Is an Interchange of active and passive states where 

an external current is transmitted. 

All remarks mentioned above concern not only an electrochemical model of 

nerve, but to a large extent also a nerve itself. A quantitative comparison 

of experimental results and theoretical predictions can be performed using 

numerical analysis. This would also permit solution of an Inverse problem, 

i.e. to determine parameters of the system from experimental data as func- 

tions of the potential. 
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